

## Guide for Judging Mathematics Science Fair Projects

In the Mathematics category, projects should demonstrate a strong understanding of mathematical concepts, clear problem-solving methods, and logical reasoning. Each project should present a structured exploration of mathematical theories or practical applications. Below are key subcategories and criteria for evaluating projects in this category, as well as important components for each project write-up and display.

---

### 1. Project Presentation Requirements

Each mathematics project should have a well-organized write-up and display that includes the following elements:

- **Objective Statement:** A clear description of the main idea or question the project addresses.
- **Research Summary:** A summary of background research and previous related results to provide context.
- **Novelty Statement:** A description of what is new, improved, or unique about this project compared to prior work.
- **Project Development:** Detailed explanation of methods and steps used to develop and explore the project topic.
- **Results and Conclusions:** A summary of findings or results derived from the study.
- **Critique and Future Directions:** Reflections on the strengths and limitations of the results, with ideas for further research or applications.

---

### 2. Key Subcategories and Evaluation Criteria

#### Algebra

- *Definition:* Studies algebraic operations and relations, focusing on equations involving polynomial functions.
- *Evaluation Criteria:*
  - Clarity and depth in exploring algebraic structures or relationships.
  - Innovation in methods or applications.
  - Applicability to real-world problems or other areas of mathematics.

#### Analysis

- *Definition:* Involves the study of limits, calculus, and differential equations, focusing on infinitesimal processes.
- *Evaluation Criteria:*
  - Rigor in using limits, derivatives, and integrals.
  - Complexity and logical structure in calculus or differential equation applications.
  - Relevance to real-world phenomena, such as growth rates or physics problems.

#### Combinatorics, Graph Theory, and Game Theory

- *Definition:* Studies combinatorial structures like sets, graphs, and strategies for games, focusing on classification and optimal strategies.
- *Evaluation Criteria:*
  - Originality and problem-solving in combinatorics or graph theory.
  - Complexity in classifications, structures, or game theory strategies.
  - Applicability to areas like computer science, logistics, or strategic planning.

#### Geometry and Topology

- *Definition:* Focuses on shapes, sizes, and spatial properties, including Euclidean and non-Euclidean geometries and knot theory.
- *Evaluation Criteria:*
  - Understanding and application of geometric and topological principles.
  - Use of diagrams and visual aids to clarify complex ideas.
  - Innovation and practical applications in theoretical or real-world geometry.

## **Number Theory**

- *Definition:* Studies the arithmetic properties of integers, with applications in fields like cryptography.
- *Evaluation Criteria:*
  - Depth in exploring number-theoretic properties or relationships.
  - Precision and clarity in proofs or conjectures.
  - Relevance to cryptography, coding theory, or other practical applications.

## **Probability and Statistics**

- *Definition:* Examines randomness and uses statistical tools to analyze and interpret data.
- *Evaluation Criteria:*
  - Correct use of statistical methods and data analysis.
  - Insightful interpretation of results.
  - Relevance to practical questions, supported by rigorous statistical analysis.

---

When judging mathematics projects, assess each one for clarity in presentation, depth of mathematical exploration, innovation, logical structure, and real-world relevance. Projects should clearly articulate the research question, display a logical progression of ideas, and conclude with meaningful insights or potential applications.